ANANDALAYA

PERIODIC TEST - 1

Class: XI

Subject: Mathematics (041) : 21-07-2025

M.M: 40

(1)

Time: 1 Hour 30 min

 3π

General Instructions:

1.

1. The question paper consists of 22 questions divided into 3 sections A, B and C.

The angles of a triangle are in the ratio 3: 4: 5. The greatest angle in radians is _

- 2. All questions are compulsory.
- 3. Section A comprises of 10 questions of 1 mark each.
- 4. Section B comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 5. Section C comprises of 6 questions of 3 marks each. Internal choice has been provided in two questions.

SECTION - A

	(A)	$\frac{\pi}{12}$	(B)	$\frac{3\pi}{12}$	(C)	$\frac{5\pi}{12}$		(D)	$\frac{3\pi}{4}$	
2.	The set builder form of set $\{0, 3, 6, 9, 12, 15, 18 \dots \}$ is (A) $\{x: x = 3n, n \in \mathbb{N}\}$ (B) $\{x: x = 3n, n \in \mathbb{W}\}$ (C) $\{x: x = 3n, n \in \mathbb{W}, 0 \le n \le 6\}$ (D) $\{x: x = 3n, n \in \mathbb{N}, 0 < n \le 6\}$								(1)	
3.	The re(A)	oster method of {1, 8,27}					x < 80 is	· } (D)	{1,8,27,64}	(1)
4.	The range of the relation $R = \{(x + 1, x + 5) : x \in \{0,1,2,3,4,5\}\}$ is (A) $\{1,2,3,4,5,6\}$ (B) $\{5,6,7,8,9\}$ (C) $\{5,6,7,8,9,10\}$ (D) $\{6,7,8,9,10\}$									(1)
5.	The d	domain of the function R	nction (B)	$y = \frac{x^2 - 9}{x - 3}$ is $R - \{9\}$	(C)	<i>R</i> − {	3}	(D)	{-3,3}	(1)
6.	The v	value of $\frac{\sin 135}{\sin 135}$ $3 + 2\sqrt{2}$		$\frac{20^{\circ}}{20^{\circ}} = \underline{\qquad}$ $3 - 2\sqrt{2}$	(C)	3 + √	2	(D)	$3 + \sqrt{3}$	(1)
7.	Find the value of $cos72^{\circ} cos42^{\circ} + sin72^{\circ} sin42^{\circ} = $									(1)
	(A)	$\sqrt{2}$	(B)	$\frac{\sqrt{3}}{2}$	(C)	$\frac{1}{\sqrt{3}}$		(D)	$\frac{1}{2}$	
8.	A and (A)			sets, given that $A \cup B = B$			one of the follow $B = B$	ving is a	not true? $A \cap B = A$	(1)
9.	Which one of the following is not a function? (A) $y = x , for \ x \in R$ (B) $y = \sqrt{x} for \ x \ge 0$ (C) $y = -x, for \ x \in R$ (D) $y = \frac{1}{x-1}, for \ x \ge 0$									(1)
10.		In the following question, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.								

(C) A is true but R is false (D) A is false but R is true

than" is an empty or null relation.

(A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true and R is not the correct explanation of A

Assertion (A): If set $A = \{1, 3\}$ and set $B = \{4, 9\}$. Then relation from set A to set B "is greater

Reason (R): A relation is an empty or null relation if it does not contain any element.

SECTION - B

- 11. The domain of the relation $R = \{(x, y): y = x 1\}$ is $\{x: 0 \le x \le 4, x \in I, set \ of \ integers\}$. (2) Find the range.
- 12. Prove that $\frac{\sqrt{3}\cos 23^{\circ} \sin 23^{\circ}}{2} = \cos 53^{\circ}$. (2)
- 13. If $A = \{x: 1 < x < 5, x \in N\}$ and $B = \{y: 3 < y < 7, y \in N\}$. Find A B and B A. (2)
- 14. If A, B, C are three sets such that $A \subseteq B$, then prove that $C B \subseteq C A$. (2)
- 15. If $A = \{1, 2, 3, 4, 5\}$ and $B = \{2, 4, 6, 8, 10\}$. Let $R = \{(a, b): a \in A, b \in B, a \text{ divides } b\}$ be a relation from A to B. Find R. Also find domain and range of R.

OR

Let $A = \{1,2,3,4, \dots, 70\}$ and R be the relation "is square of" in A. Find R and its domain and range.

16. If sinx + siny = a and cosx + cosy = b, show that $tan\left(\frac{x+y}{2}\right) = \frac{a}{b}$. (2)

OR

Prove that $cot2\alpha - tan\alpha = \frac{cos3\alpha}{cos\alpha \ sin2\alpha}$

SECTION - C

- 17. Let $f = \{(1,1), (2,3), (3,5), (4,7)\}$ be a function defined by f(x) = ax + b, for some integers a and b. Determine a and b.
- 18. Let $A = \{-2, -1, 0, 1, 2\}$ and $f : A \to Z$ given by $f(x) = x^2 2x 3$. Find

 (3)
 - (i) Range of f (ii) Pre- images of 5

OR

Find the domain and range of the function $f(x) = \frac{x+3}{x-2}$.

19. If $sec\theta = \sqrt{2}$ and $\frac{3\pi}{2} < \theta < 2\pi$, find the value of $\frac{1 + tan\theta + cosec\theta}{1 + cot\theta - cosec\theta}$.

Prove that $tan75^{\circ} + cot75^{\circ} = 4$

- 20. If $A = \{1, 2, 5\}$, $B = \{1, 2, 3, 4\}$, $C = \{5, 6, 2\}$, then verify that: (3)
 - $(i) \ \mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{A} \times \mathbf{C}) \qquad (ii) \ (\mathbf{A} \mathbf{B}) \times \mathbf{C} = (\mathbf{A} \times \mathbf{C}) (\mathbf{B} \times \mathbf{C}).$
- 21. Find the values of $\sin 2\theta$, $\cos 2\theta$ and $\tan 2\theta$, when $\tan \theta = \frac{24}{7}$, θ lies in the 3rd quadrant. (3)
- 22. Observe the Venn diagram and write the following sets.
 - (i) $(A \cup B) C$
 - (ii) $A' \cap B$
 - (iii) $(A-B) \cup (C-B)$
 - (iv) $(A \cap C)' B$
 - (v) $A' \cup B'$
 - (vi) $(A \cup B \cup C)'$

(3)